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ABSTRACT
A method is presented by which an optimal control may be ob-
tained for a linear time varying system With time delay. The perfor-
'manc‘e criterion is quadratic with a fixed finite upper blimit. Thé results
-are a set of partial differenti.al equations with boundary cqnditions,
whose solution yields an opfimal feed};ack control, The discussion
includes possible methods for the solution of L;he partial differential

equations,



I, INTRODUCTION
Mapy physical systems are best modeled by the use of time de-
lay equations [1]; that is, a differential equation of the form
%(t) = F(t, x(t), x(t—-hl)’. .o ,x(t—hn), u(t))
In some systems of this type it is desirable to select certain control
parameters to minimize a performance criterion modeled by a cost func-

tional of the form

J(u) = G(x(T),T) + J‘T g(t, x(t), u(t))dt.

(o)
Kharatishvili [2] has approached this problem by extending Pontryagin's

Maximum Principle to time delay systems. The actual solution involves
a two point bounda;y value problem in which advanées and delays are
present. In addition, this solution does not yield a feedback controller.
Time optimal control of delay system.s has been considered By Oguz-
toreli [3]. He has obtained several results concerning "bang-bang"
controls which parallel those of LaSalle [4] for non-delay systems., For
a time invariant system with an infinite upper limit Krasovskii [5] has de-
veloped a closed loop controller involving an integral over the delay period.

For a linear time varying system with a singlg delay Krasovskii [6]-
states thaAt if a quadratic cost functional is used, the optimal cost func-
tional must be of the form

x' (e )p, (t )xlt )+ x' () §°h p, (t_, s)x(t_+s)ds

+ j‘ h‘j‘ x'(t +s)p (t 1, s) x(t +r)dr ds,
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where h is the delay. These results, however, are not proven and no
" information is given on how to obtain pl(t(')), pz(to, s) and p3(to,r, s).

This paper use’s Krasovskii' s [6] results to de\{elop a set of
partial differential equations' Which may be solved for the optimal feed-
back controller of a linear time varying system with delay. The co‘st
functional is quadratic and has a finite upper limit. Although the re-.
sults obtained are for systems with a single delay,l they a;e easily ex-
tended to multiple delay systems, The partial differential equations
obtained are discussed and some techniques for solutions are mentioned.

Under the restriction that the initial time to of the cost functional

is within a delay period of the final time T, the problem is also solved

by the use of a known technique and the results compared,

II, NOTATION AND PROBLEM STATEMENT

Consider a system of the form

x(t) = A(t)x(t) + B(t)x(t-h) + D(t)u(t) (1)
where x(t) is an n-vector; u(t) is an m—vectsr, the control; A(t), B(t) and
D(t) are nxn, nxn and nxm matrices respectivsly, which are continuous
'in’ 't, the 'Fime; h is a positive scalar constant, the delay. The following
notation will be used:

(i) The dot der.lotes the time derivative,

(ii) ' dsnotes the transpose.

(iii) C[-h, 0] and le—h, 0] will denote the space of functions

costinuous on [-h, 0] and the space of differentiable functions

~

" on [-h, 0] respectively.



(iv) xT(s) 4 x(r+s) = @(s), sel-h, 0] where e C[-h, 0], and
therefore the convention xTe cl-h, 01.
(v) x" denotes a solution of (1) for telr, T]. x = ¢ and 're[to,T].

(vi) Let V(t,cp):[to, T] x C[-h, O]'-aR1 be a continuous functional, define
u .
VAL XY, )-V(t ¢)

dt Hu(t) At-o At '
where x; A ¢ Fepresents the solution of (1) and ¢ is the initial

function at time t.
(v) R1 denotes the reals,
A control is desired which will minimize the functional

I(to[xt ,u=x' (T)Fx(T)lx_:Xu+ J‘T {x' () Qt)x(t)+ul(t)R(t)u(t)} udt (2)
0 : t ‘ X=X

% ' (o]
subject to (1). Such a control will be called optimai. ‘In (2), Fisa
symmeftric, positive semi-definite.nxn matrix; Q(t) is a qontinuous, syxﬁ—
metric, positive semi-definite nxnmatrix; R(t) is a continu_ous, symmetric
~N

positive definite mxm matrix; to < T-h,

Preliminary‘ Results

The following lemma establishes a sﬁfficient condition for a
control u to be optimal, _
Lemma 1, If it is possible to find a continuous functional
V(t,np):[to,'l‘] x C;—h, 0l -R', and a function u0(t) such that

() V(T,9) = ¢' (0)Fp(0) |

and in view of Equation (1) with ¢ as an initial condition.
() Sa |+ @R (OREu (=0 (3)

(1i1) 91’%59)— 1u(t) +' (0)Q(B)g(0)+u’ (YR u(t) >



dvéﬁ ‘uO(t) + @' (0)Q(t)p(0)+u0’ (t)R(t)uo(t) ()

vtelt_, ] and ¥oe Cl-h, 0].

Then

V(T I(P) = I(T,CP,UO)

and

I s9,u0) =V(r,¢) < T(r, o, u) ,VTe{to,T] and Voe C[-h, 0].

-

Proof, In the evaluation of Equation (3) along a trajectory of (1), ¢(0)
becomes X:(O) . Therefore, the integration of Equation (3) along a tra-
jectory of (1) with u(t) = u0(t) yields

r (%) | | |
J‘T {5+ x(0Q(t)x (0+u0’ (IR(Yu0(t)}__ uo dt =0

but xt(O) = x(t) so

J7 U5+ x (0Q()x=()+u0’ (IR()uo(1)} dt =0
T =x 0

where

X = @, an arbitrary element of C[-h, 0], Then

—V(T ' CP)+V(T-I XT) l uo

=X

=T e (ol -
0 —fT {x' (DQM)x(B+u0’ (DR()u0()} dt.

From Condition (i) of the theorem it is seen that

Wl ghrx M|

= - J'T {x' (1) QD) x(D)+u0" (DR(Du0(t)} dt
X=X T

uo
X=X

and hence

- Jlrip,u0) =Vi(r,o )

=x' @Fx(D| o+ [T (% (0QWx(t)+u0’ (IR(u0}] __ dt
X=X T ' X=X

Vrelt ,T] and Ve C[-h, 0].



Integration of Equation (4) from 1t to T yields

e Wltx) . ‘
J U —g = 0Qx@+u (ORMu(D} | de>0

T X=X

where X =¢. Then

Vg MERD] + [T {x (DQxH ORBu®}] | dt>0
XX T X=X

which implies
I 9,u0) < Jlr, 9, v), VTe[to,T]'and Voe C[-h, 0].

Q.E.D.

.~
~

I, AN OPTIMAL FEEDBAGK CONTROL
Lemrr;a vi-Will now be used to obtain sufficient conditions for an
optimal control in feed-backvform. From this point on X, will be used tc?
indicate the part of the solution xu from t—h tot, It shéuld be noted
that if t is the initial time, %, =9, an arbitrary element of Cl-n, 0].
A form for v(t, xt) will be assumed and the unknown variables
in the form chosen so as to satisfy conditions (i), ‘k(ii) and (iii) of

Lemma 1, It will be shown later that if V(t, xt) is of the form

Vlex) = = Ay x40 0 [0 vyt shlera)as

+ '[21 “{;21 x' (t+s)y,(t, 1, s)x(ttr)drds, )

then the following will be satisfied for all r and s contained in [-h, 0]
yz(t. s) = 0 for T-h < tt+s (6)
and

y3(t,r, s} = 0 for T-h < t+s or T-h < t+r (7)
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and for F # 0, 'yz(t’ s) is discontinuous at s+t = T-h and ys(t,r, s) is
discontinuous at

stt= T-h and rtt < T-h or rtt = T—ﬁ and stt < T-h..
Because of the above two separate cases will be considered.

Case 1 (t < T-h)

Define

v,(6x) 2 = @, (000 + 22 3 j_"h p, (&, S)x{r+e)ds

+ J’il I-Oh x' (t+s)p3(t,r, s)x{t+s)ds (8)

where pl(t) . pz(t, s), p3(t,r, s) are nxn mafrices. It is assumed without
loss of generaiity [f.see Appendix I] that pl(t) is symmetric and
ps(t,r’, s) = p3(t.s,r)._ i

pz(t, s)-and p3(t,r, s) are assumed differentiable with respect to t,r and

s in the region t < T-h,

v, (t. x)
In order to evaluate ————— it will be necessary to differen-

dt
tiate x(t+s) with respect to t for se[-h, 0], therefore assume X6 C.l[-h, 01,
the space of differentiable functions. The differentiation of Equation

(8) with respect to time yields

v, (t, %) '
—g— = %' (0p, (x(t)+x" (9D, (Ox(1)

+ x' (Db, (D&(0)+2%" (1) jo b, (t, $)x(t+s)ds
- ~h

o 3P,(t,s) 0
+2x' (t) J' T x(t+s)ds +2x' (t) J‘ pz(t, s)x(t+s)ds
-h -h

- IO J.O %' (t+s)p, (t, 1, 8)x(t+r)drds
“h'-h 3 .



J' j' (t+e) ap3(t,r, s) () :
+ x' (t+s x(t+r)drds
“h “h ot
+J‘ J‘ x' (t+s)p (t T, s)x(t+r)drds (9)
-h -h
Using Equation (9), —“—Et———— is now evaluated along the trajectories -

of (1). Noting that

dx(t+s) _ dx(tts) -
dt ds

and that pz(t, s) and ps(t,r, s) are differentiable, integration by parts

yields

M | = 2x' (£)A' (t)p. (t)x(t)+2x' (t-h)B" (t) p. (t)x(t)
dt =x" ! '

+2u' (t)D(t)bl(t)x(t)+x' (0D, (D)x(D+2x" (A" (1) f(; p, (t, s)x(t+s)ds

A+2x' (t-h)B' (1) J'O pz(t, s)x(t+s)ds+2u' (£)D' (t) IZ pz(t, s)x(t+s)ds

3p, (t, s) _
+2x(t) fo .__2_-...-—.X(t+s)ds+2x' (t)pz(t, s)x(t+s) l:;c_’h
ap3(t T, s) o 3P, (t 9 |
+ '[h‘rh x' (tts) ———— x(t+r)drdsA—2x (t)f Tx(ﬁs)ds

3p,(t,1,s)
+ j_(;[x' (t+8)p (k. v, shxlern) |20, - I_Z x' (t+s)—-—3-'5;————x(t+r>dr1ds

s=0 S(t r.s)
o+ Lh Ix' (t+s)p3(t T, s)x(t+r)| s=h —‘f x' (t+s) e x(t+r)dsldr.

"Adding x' (t)Q(t)x(t)+u' (t)R(t)u(t) to both 51des and grouping terms yields



dvl (t ’ Xt)

——5 | 00D+ (IR = ' (9124' (9p (D+Q(A+, (1

X=X
' ' . . ‘ 0 apz(t.s)
+2p2(t.o)]x(t)+x (t-h)[2B (t)pl(t)—sz(f.-h)]x(t)}+x (t) J: h[—z—-s-;-—-

at

+2 +2A" (t)pz(t s)+2p3(t 0, s)]x(t+s)ds+x (t—h)j‘ [2B" (t)pz(t,s)
‘ 3(t r,s)
—Zp (t,- h,s)]x(t+s)ds+£h J;hx (t+s) s

ap3(t,r, s) aps(t, r,s)

- e - e Ix(t+r)drds +2u' (t)D" (t)pl(t)x(t)

+2u' (£)D* (t) J‘O pz(t, s)x(t+s)dstu’ (L)R(B)ult) (10)
-h

-

Now a ul will be found such that condition (iii) of Lemma 1 is satisfied.

~

From Equation (10) it is seen that

dv, (t, X) .
o —— |yt oy (MR}
- au(®)

=0
if and only if
ult) = -R_ (t)D (t)pl(t)x(t) R (t)D (t) ‘f pz(t s)x(t+s)ds  (11)

dV(tx)

o2 I QW (DR}

Since x=x, 2 = R(t) and
auft)
av (t x) |

3 { 1 ¥ O+ (t)R(t)u(t)}

X;X ‘ =0, n>2,
n
Ju

u(t) as expressed in Equation (11) is a global minimum of

dVl(t, Xt) :
—5— |, x 0QWx(t+u' (IR u)

X=X



and condition (iii) of Lemma 1 is sa;tisfied by

ul(t) = =KD" (0)p, (9x()-R (D" (0 1° p,(t xltts)ds.  (12)
u(t) appears only in the last three terms (L_;?}tT,)-of Equation (10), which
on substitution of ul(t) for u(t) yields

L.T.T. = -2x' (9p (9DWR™ (D" (95, (901
- j‘; 2" (t+s)py s)D(t)R—l(t)D"(t)pl(t)x(t)ds
~2x(t)p, (DR (O (1) f‘; B, (t, s)x(t+s)ds
-2 Jix' (t+s)p, (t, s)ds D(th'l(t)D' (t) ‘[(1)1 p,(t, s)x(t+s)ds
+x' (8p) (DR (9D" (9p, ({1

19 1% = (ere)my (1, )DWR™ (OD' ()b, (¢, Dx(tr)drds
~h -h

4% (t)pl(t)D(t)R_l(t)D' (1) J“O B, (t, shx(trs)ds
~h

+ [ %' (tr)p) (¢, s)ds DOR™ (9D' (9o (Ox(0),

-h .

which reduces to .
CL.T.T. = - (95, (DR (9D (), (90

~2x" (1) J‘O pl(t)D(t)R-I(t)D' (9)p, (t, )x(t+s)ds
-h : »

"'fo fo x' (t"’S)P'z(t'S)D(t)R—l(t)D’ (t)pz(t,r)x(t+r)ards (14)
“h‘-h

Utilizing Equation (14.), Equation (10) becomes

Tdat \szu +x' (O)D(D)x(t)+u’ (DR ult)=x' () [2p(t)p, (D+Q(1)+D, (¢)

+2p2(t, 0)—17‘1(t)D(1:)R"1 (t)D' (t)pl(t)}x(t)+2x' (t-h)[B' (t)pl(t)—pé(t, -h]x(t)

apz(t. s) apz(t, s)

+x'(t)“j0[—2 =5 +2 v +2A'(t)PZ(t,s)+2p3(t,0,s)
-h
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~2p, (OD(OR™ (9" (9p, (&, S I(ers)ds

+x' (t~h)j“0 [2B' (t)pz(t, s)—2p3(t,~h; s)Ix(t+s)ds

~h
0 .0 apa(t,r, s) ap3(t,r, s) ap3(t,r, s)
¥ J:h J-.-h x (ers)l B'tv - 35S - or
Pyt DR HD! (t)p, (t,ir)]x(t-!—r)drds ‘(15)‘

In order to satisfy condition (ii) of Lemma 1, Equation (15) is equated
to zero, This must hold for all,to < t < T-h where X, is a c.ompletely
arbitrary element of Cl[—h, 0]. A necessary and sufficient condition for
fhis equality is that the following equations hold for t < T-h:
ﬁi(t)—pl(t)-D(,t)R”l(t)D' (t)p, (D+p, (&, 0)+p, (t, 0)+A" (t)p, (1)
+p, (DAWM+Q() = 0 (16)

BPZ(tIS) aP,(t, s) T o 1 |
R N VA C s)+py(t, 0, 8)-p; (ODR™ (DD’ (0p,(t, 5)=0 (17)

apgltir,s) ap,(tir,s) ap,ltir,s) -1 :
- - -py(t, sID(R “()D* (1)p, (t,)=0 (18)

at dS Jr

p (990, (1) = p}(t,~h) (19)
and

B' (t)p, (1, s) = py(t,~h,s) ' (20)

where ~-h<s< 0, ~hg<r< 0,

The above equations are clearly sufficient. It remains to be shown that
" they are neceésary.

Letting x{t) = 0'and x(t-h) = 0 and equating (15) to zero yields’

0.0 . ap3(t,r, s) ap3(t,r. s) ap3(t,r, s)
J‘ J' x' (t+s)[ : 2% -7

<

-py s)DOR™ D' (1) b, (t,)]x(t+)drds = 0
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Since the integrand is assumed continuous Corollary 1 of Appendix 2
states that Equétion (18) is necessary.
Letting %(t) = 0 and equating (15) to zero yields

x(t-b) [0 (28" (1, (t, £)-2p,(t -, &)x(trs)ds = 0,
-h .

From Corollary 2 Appendix 2 Equation (20) is seen to be necessary.
wa let x(t~h) = 0 and equate (15) to zero, It is seen that
[] . i “1 T
x' () [2A(t) p, (D+Q(1)+D, (+2p, (¢, 0)-p, (DR “(1)D (0 p, (D1x()

0 3p,(t;s)  ap,(t,s) ‘
+x' (t) J" [-2 — 42 +2A" (1) pz(t, s)+2 p3(t, 0, s)
-h ’

98 ot

-zp‘l‘(t)D(t)R“l(t)D- (9, (&, &)x(rs)ds = 0,

It is apparent that for this to be true

x (1) [2A (1) p, (D+Q()+, (142D, (£, 0)-p, (IDIIR™ (D" (tp, ()]x(9=0
and | : |
0. 3P(t:s) 3p,lts)
x' (t)J;h [-2 a5 P2 2R (U, (s s)¥2p (. 0, )
~2p, (DR (D' (I, (¢, )]x(t+s)ds = 0 (22)

(21)

From Corollary 2 Appendix 2 for (22) to be satisfied Equation (17) is neces-

sary and for (21) to be satisfied it is necessary that (16) be satisfied,

Now equating (15) to zero yields

2x' (t-h)[B' (t)pl(t)—p'2 (t,~h)Ix(t) = 0 (23)

For this to be true (19) is necessary. Thus (16)-(20) are seen to be

necessary for expression (15) to be zero.
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Case II (t > T-h)
Define |
[} 1 T"‘hl"t
V. (t,x) = x' (Dw. ()x(t)+2x (t)f w, (t, s)x(t+s)ds
g\t ¥y 1 . 2

T-h~t

S

- where wl(t), W, (t, s) and w3(t,r, s) are nxn matrices,

T-h-t

x' (t_+s)w3(t, r, s)x(t+r)drds (24)
-h

wz(t, s) is assumed differentiable for t > T-h and -h < s < T-h-t,
w3(t.r, s) is assumed differentiable for t>T~h and ~h<s<T~h-t
and -h <r < T-h-t.

This form is chosen since Equations (6) and (7) imply that

‘J"o ‘wz(t,vs)x(t+s)ds =0

T-h~t
and

-J‘O x' (t+s)w3(t,r, s)x(ttr)dr = 0,
T-h-t
It is assumed without loss of generality that wl(t) = wt) and
w3(t,r, s) = W3(t, S,1). |
Differentiation of Equation {24) with respect to time and noting

that

dx(t+s) _ dx(t+s)
dt ds

yields

de (t, Xt)

T = & Wwy (Dt (1w (%) (w, (0x()

—h- cmp e 3W, (L, s)
T-h-t T-h-t ?..t x(t+s)ds

+2%' (t) j'*h w, (t, s)x(t+s)ds+2x’ (t)]‘—h

T-h-t.

+2%" (1) ‘f—h w (. s) i’%i ds-zx"(t)wz(t, T het) %(T—h)
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. j.T—-h-t J.T—h—t ,c_igc_a(_tsj-_sl w(t.r, s)x(thr)drds
-h ~h

+ j‘Tuh—t J‘T—ha‘t x' (t+s)w_(t, 1, 8) dx(thn) drds
-h -h 3 dr

dw.(t,r, s)
+J,T_h.. fT h-t %" (t+5) ,~.§~t_.___._ x (t+r)drds
-h -h °

fT h-t (t+s)w(t, T-h-t, s)x(T-h)ds
- J\T“‘h"t

x' (I-h)w, (t,r, T-h-t)x(t+r)dr. (25)
~h 3 ,

dvz(t_,xt)
dt

of (1). Since wz(t, s) and W3(t,r, s) have been assumed differentiable,

Using Equation (25), is now evaluated along the trajectories

integration by parts yields

dvz(trxt) = 7 » |
I e ‘qu =2x' (A (t)wl(t)x(t)+2x (th)B (t)wl(t)x(t)

+2u' (t)D* (t)wl(t)x(t)+x' (t)v(rl(t)x(t)+2x' (DA (t) J"T"h"th(t, s)x(t+s)ds
' -h

+2x (-0)B' (1) J"T“h" w, (&, s)x(trs)ds+2u’ (D' (1) IT‘h" w, (&, s)x(t+s)ds
-h
£2x' (8) ThtaW(ts) (trs)ds+ax’ (1) (trs) | STt
x' J‘ St x(t+s)ds+2x th(t,s)xts.s=__h

_ 3w
-2 () [T =2 xfers)ds-2x (9w, (¢, T-hethx(r-h)

(t,r, s)
x(t+r)drs

ow

x' (t+s) 3

T-h~t »T-h-t
-
N
+ J-\T"h“‘t I'—T h"‘

-h

[x' (t+s)w (t,r, s)x(t+r)‘

(t,r,s)
x{t+r)drlds

aW

x' (t+s) —

T-h-t
-

~h
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s=T-h-t

T-h-t
+f -h

~h

[x* (t+s)w (t,r, s)x(t+r)l

(t,r,s)
x(t+r)dsldr

3w

x' (t+s) 3

T-h-t
I-h

T-h-t
I—h

T-h-t
I—h

Adding x' (t)Q(t)x(t)-Fu" ()R(t)ult) to both sides and grouping terms yields

x' (T~h)w3(t, r, T-h-t)x(t+r)dr

x' (t+s)w3(t, T-h-t, s)x(’i‘-—h)ds.

dvz ‘ e ‘ J .
- (t,xt) | u ¥ x' (t)Q(t)X(t)+u' (t_-)R(t)u(t) = X_(t)[ZA‘ (t)wl(t)

dt
X=X
+Q(t)+w (t)]x(t)+x (t-h)[2B" (t)w (t) 2w (t, -h)Ix(t)

- h—- awz(t, s) 3w, (t, s)

+x' (&) J‘ . +2 " +2A" (t)wz(t, s) }x(t+s)ds

T-h-t

4%’ (t-h) I77 2 Oy 92t b aterslas

. L aw. (t,r,s) aw,(t,r,s) aw,(tr,s)
# [TBt Thet g (20 3 3 Jx(t+r)drds
4 C-h o °% ¥

T-h-t

+2u' (t)D' (t)w (t)x(t)+2u (t)D! (t)f
-h

2(t, s)x(tt+s)ds

+u' (OR(Du(t). | (26)
Now a u2(t) will be found such that (iii) of Lemma 1 is satisfied. u2(t)
is found just as ul(t) was previously, and is a global minimum of (26);

T~h-~t

w2(t) = -~ (t)D (), (90K L (9D" (9 j Wz(;t,s)x(t-l-s)ds 27)

This is substituted into (26) to obtain
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dv'z(,t,ﬂxt)‘ ' ‘ - .
- 1 o FE (0QMx(D+u’ (R ult)=x" (1) [2a (Bw, (0+Q(1)
X=X '

iy (t)+w1(t)D(t)R—1(t)D' (9w, (91x(0+2x" (-h)[B' (B, (1

awz(t, s) aw, (t, s)

T-h-t
- + +24" (t)w
[-2 27 VA (t)w, (t, s)

-h 98

—W'z(t,—h)]x(t)+x' (t) J‘

T-h-t

-~h .
3(t,r, s)

—2w1(t)D(t)R—1(t)D' (t)wz(t, s)]xkt+,s)ds+x' (t-n)| [2B' (t)wz(t, s)

—h— ~he oW

-2w' (t,-h, s)Ix(t+s)ds+
"3 J L

aw3(t,r,_S) ’aw3(t,r, 8)

e »—w'z(t,s)D(t)R—l(t)D'(t)wz(t,r)jk(ti-r)drds (28)

“

In order to sat;iSfy condition (ii) of Lemma 1 Equation {2 8) is equated to

zero for all X.e Cl[—h, 0] and foi all' T >t> T-h. As before a necessary

and sufficient condition for this to be true fo; T>t>T-his
wluLWH}aDunflunr(awlawﬂ'uhﬁxo+wlunﬂﬂ+oh)=o (29)

awz(t,s) awz(t, s)

2 +A'(t)wz(t,s)—wl(t)D(t)R_l(t)Df(t)wz(t,s)=0 (30)

dw,ltir ) aw,(t.r,s) 3w,l(t,r, ) -
- - -w, (t, s)D(OR (D" (t)w, (t,1)=0 (31)

at‘ ‘ s ar
B (w, () = wylt,-h) (32)
and
B' ()w, (t, s) = wi(t,-h, s) (33)

where -h < s < T-h-t, ~-h<r< T-h-t .
Since Vl(t,xt) is to be the optimal cost functional for t < T-h and

Vz(t,xt) is the optimal cost functional for t > T-h it is clear that

Vy(T-h,x, ) =V, (T-h,x;_,)
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or

x' ‘(Tah)[pl(T~h)-w1(T—h)]x' (T—?q)+x‘ _(T-—h){i [p2 (T-h, s)—-»wz(T-h,'s)]ds

+J‘O J'Ox' (T-h+s)p. (T-h,r, s)-w_(T-h,r, s)]x(T?h+r)drds =0 (34)
-h“h 3 3

must be satisfied . Equation (34) is satisfied if and only if borollary

1 and 2 Appéndix 2)

pl(T—h) = Wl(T—-h) (35)
pz(T~h, s) = w, (I-h, s) (36)
_ p3(T—h,r, s) = w3(T—h,r, s) (37)

To actually force (35)-(37) to be satisfied, wl(T—h), WZ(T—h, s)‘ and
W3(T-h,r, s) may be used as additional boundary conditions for (16)-
(18)'. Vl(t,_xt) and Vz(t,xt) and ul(t) and u2(t) are now combined in the
following way. R
' ul(t) for t < T-h
u0(t) = (38)
u2(t) for t > T-h
Vl(t,xt) for t < T-h
V(t,xt)= (39)
Vz(t,xt) fort-h<t<T
It is seen that u0(t) and V(t,xt) defined in this way satisfy conditions
(1) and (iii) of Lemma 1, all that remains is to satisfy condition (i) of
Lemma 1. To do this
w, (T)=F (40)
Therefore, V(t,xt) and u0(t) satisfy Lemma 1 and are hence the optimal
cost and control respectively.

Equations (6) and (7) are now derived. These equations arise

from a close examination of a delay system when t, the initial time,
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is within a delay interval of the final tirhe. If r > T-h, ‘x(t-—h) becomes
a known function of time over the entire optimization interval and is
given as a part of the initial condition. From this it is clear that the
optimization problem for the delay system (1) is equivalent to minimiza-
tion of (2) subject to

:’c(f) = A(t)x(t) + z(t) + D(t)u(t)
where
2(t) = B()x(t-h) and 1 > T-h.
The optimal -cost for the new problem depends only on A(t), z(t), D(t),

R(t), Q(t), F, T and x(r) [7].Once these functions are chosen the opti-

~

~

mal cost is fixed. Since the two systems are equivalent, V(r 'X'r) for
v >T-h, as expressed in (5), must be such that it does not depend on
x(t) for T-h < t< 7. A necessary and sufficient condition [Appendix 2]

for this to be true is that Equations (6) and (7) be satisfied.

v, SOME OBSERVATIONS
The solution of the problem is complic;ated by the need to solve
a system of partial differential equations, Several ideas wi}l now be
presented which will give more insight into methods of solution and
utilization of the boundary conditions.
Vl(t,xt) in Equation (8) may have been selected as.
Vit x) = %' (0 pE(Dx(d e (1) f pE(t, )% ()dg

h
)

t~-h t-

t ,' Y
x' (q) pg(t,q,v)x(v)dqdv.
h

This results in a different but equivalent form of the equations involving

the p*'s. These equations may be derived by assumming
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p,(t, s) = pi(t, t+s) (43)
‘and
p,(t,T, 5) = p(t, thr, t+s)., (44)

Substituting Equations (43) and (44) into (16)-(20) and noting'that

apx(t, t+s) 3p%(t, g " 3p(t, g
2 102 + 22 ,
at at g=tts 34 g=tts
and
api(t, thr, t+s) ori(t,a.v) ap’é(t,tI,V) api(t, q,v)
= + — + e
ot at gFtts d4q ag=t+s v g=tt+s
v=ttr v=tir v=tir

yields, for t < T-h, t-h<g<t, t~hgvt

by(t)+a" (DpF(0+p} (DA +p5(t, 1)+ps" (t, t)~p*i(t)D(t)R'1(t)D' (£ p(1)

+Q(t) = 0 ~ ' (45)
B' (9p4(0) = b3 (t, t-h) (46)
Bpg(t: Q) | -1 '
T+A (t)pg(t,q)+p’3‘(t,q,t)-pfl‘(t)D(t)R (t)D (t)p3(t, ) ’=0 (47)
B' ()p5(t, q) = pk(t, q, t-h) (48)
apg(tf aq., V) : -1 ' .
Y -p3' (@) D{R “()D" () p5(t, v) =0 | (49)
‘The same proceduré may be carried out for Vz(t,xt) where t > T-h yielding
W' (1w (0w (AW -wHODOR (D' (w3 (0+Q() =0 0)
B (t)w’{(t) = w3 (t,t-h) (51)
uawg(t: Q) ‘ -1 '
ST A (wi(t, q)—w*lf(t)D(t)R (D (t)wg(t, q) =0 (52)
B* (wi(t, q) = wi(t, q. t-h) (53)
awi(t.q,v) 1
-—T* —W;' (t, QDR “()D' (t)wz(t,v) =0 (54)

where T< t < T-h, t-h< q< T-h, t-h<v < T-h,
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Substituting pé‘(ﬁ, t+s5) into Equation (38) for the optimal control yields
for t < T-h, |

ul(t) = —R'l(t)D' (t)pi(t)x(t)—R—l(t)D' () J‘_O p’é(t,t+s)k(t+s)ds
4 I
Let g = t+s and ul(t) becomes

-1, i
ul(t) = -R (D' (Op¥(e)x(t)-R (D' () [ pi(t, Q)x(q)dq (55)
. t-h
Then for T-h <t < T
w29 = -R (D" Wwh(Ox(0-R ™ @D @) [
t-h
A technique for the solution of (50)-(54) will now be presented. First,

w(t, @)x(a)dq (56)

w’i(t) is obtained from (50), using w"l‘(T) = F, Utilizing w'i‘(t) and Eq.
(51), Figure 1 illustrates the information known about wé‘(t, q) as wel.l
as a possible apprc;ach to tﬁe solution of Equation (52). First (52) is
solved.for q fixéd at qq T-2h < q; < T-h. |

This solution will involve an unknown constant and will be valid

along a line of T=q, for T-h < t < q,+h as illustrated in Figure 1, Then t

1
is varied until a boundary condition can be used to evaluate the unknown
6onstaﬁt. Pro;n Figure 1 it is seen that if t=q1+h, the boundary condition
(_5 1) may be used to evaluate the unknown constant.
Carrying out the above‘ idea analytically, the solution of Equa—
tion (52) is of the form |
w'é‘(t,qi) = @(t’,'r)cl
where &(t, 1) is a solution of (52) such that &(y,7) = 1. If t is now

changed and q, held constant, the boundary c_ondition at t=qi+h may be

used to evaluate Cq yielding

* = % +h)Y T-
wz(t,ql) @(t,q1+h)wl(ql+h)B(q1 h) T-h<tg q,*h (57)
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Utilizing Equation (57) it is'clear that wg(t, q) can be calculated for
T-h<t< T, t-h<q< T-h, Knowing wi(t, Q. wg(t, q.v) may also be
determined by the above approach, Equation (54) is solved for ¢ and

v fixed at ql.and v. . The solution involves an unknown constant as

1

before. Then t is varied along the line t, qq:v until boundary condi-

1
tiéns (53) can be us-ed to evaluate the ﬁnknown COngtant.,

In Equation (§7) if F# 0 and q; = T-h then

w’i‘(q1+h) = F, hence

wi(t, T-h) = 2(t, T-h)FB(T-h).

Therefore, if B(T-h) # 0
wg(t}T‘:h) #0 T-h<t<T.
Since it will be shown that (6) is éatisfied, i.e.
: w%‘(t,q) =0forT-h<g<t Vt>T-h,
it is clear that wz(t, q) has a discontinuity at g=T-h. In a similar fashion
it can be shown that wg(t, q.v) is discontinuous at ¢=T~h and v_<; T-h or
g< T-hand v=T-h,

The main problem remaining is that of finding a technique for the
total solution of the partial differential equat;ons. One of the most power-
ful methods adaptable to this problem is that of finite difference, This
method cc.mld be used with Equations (16)-(20) and (29)-(33) or (45)-(54),
whichever is more desirable for a particular problem. It would be possi-
ble to use Equation (47) and its equivalent for wg(t, q.v) to obtain the
solution for t > T-h. Using the solution at t=T-h as a boundary condi-

tion, the sol}ltion could then be obtained for t < T-h using difference

techniques,
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It is interesting to compare the optimal control generated to

minimize (2) for t, > T-h subject to

0
x(t) = A(t)x(1)+D(t)ult)+=z(t) (58)
where
z(t) = B(t)x(t-h)
and the optimal control to minimize (2) ‘subject to (1), Since, as was
mentioned, the systems are equivalent, the controls shouizzl be equal.
The optimal control for (58) is [7]
up (1) = -R™ (9D (DK(Dx(0+R (9D (D g0
where K(t) is a solution to the Riccati equation and
5(0) = [-A@+DOR  IDOKIg-K(D2() (59)
g(m) = 0.
Since
2(t) = B(t)x(t-h),
up(8) = =B (D' OK(Wx+R™OD' () [F 8t K(o)Bl)xlo-h)do
where @R(t,g) is the fundamental matrix fozrr (59) . ALetting o=qth and re-
versing the limits of integration yield | ~
v (9= -K"H (D" (K (D(0-R ™ (9D* (1) yf: b, (t, rIK(qHBlg )x(a)dg  (60)

Utilizing Equations (56) and (57), the optimal control for (1) is

02(9=-R" (D" (i (xR (D ()] "a(t, q +h)wh(a+h)B(a +hx(a,)dg
t-h

Since w”lf(t) = K(t) and @R(t,c) = 3(t, o) it is seen that uR(t)=u2(t).
A method has been presented which generates an optimal feed-

back controller for time varying systems with delay. A set of partial
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differential equations and boundary conditions, whose solution Ayields
an optimal feedback controller, aré presented. The existence of a solu~
tion to these equations has not been proven and woﬁld be a problem for
further research, Techniques for the possible numerical solution have
been suggested, although their convergence for this problem has not
been investié;ated. For the degenerate.case where h=0 the above results

reduce to those obtained previously for non-time delay systems [7].
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APPENDIX I
It will Ee shpwn that no loss of generality results when Py (1)
and p3(t,r, s) are restricted by
p, (1) = B} (1
'p3(t,r, s) = pylt,s.1).

Lemma 1,

J.O J..O x' (1) [ G(t,r, 8)+G' (t, s, 1) Ix(t+s)drds

“h'-h 2

- IO J~° %' ()Gt 1, 8)x(t+s)drds
-h ~h

for all continuous G(t,r, s).

Proof -

J‘O J‘O %" (t+1) [G(t,r, s)+G"' (t,s.r )]

5 x(t+s)drds
~h ‘-h

=J‘0 ‘fo %' (t+r) Gft,;, S)X(t+§drds+f0f0 %! (t+r) .,C.%_'_.(.EZL_.S_LI)_ X(t+s)drds.,
-h "h -h-h

Transposing the second term on the right hand side yields

0 .0 , [Glt,r, s)+G' {t,s,r)]
Ly

x(t+s)drds

'=f0 jo e (prr) SleLe8) X(t+r)drds+J‘0J"0 x (ers) EEEE) iy ards.
~h -h 2 h'-h 2

Since r and s are only dummy variables and have the same limits of inte-

gration, interchange r and s, and then the order of integration yielding

J.0 IO ' (t41) [G(t,r, s)+G' (t,s, )] (t+s)drds

“h-h 2

-h -h 2 ‘ _h-h 2

= jo | IO %' ()Gt T, 8)x(t+s)drds
-h ~h . ’ Q.E.D,

24
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It is well known that

x'(F+FP'X
-2

-

x'Fx = VF.
Hence the form of pl(t) and p3(t,r, s) may be restricted and still generate

-the same functionals obtainable by arbitrary P (t) and p3(t,r, s).



APPENDIX 2

Theorem 1.

V(r,xT) for T >t > T-h does not depend on x(t) for T-h< t< T
if and only if |

pz(t, g) =0 t>stt>T-h (a.1)

p3(t,r, s) =0 t> s+t > T-h or‘t >+t > T-h (a.2)
“where P, (t, s) is continuous for T-h < t+s < t and p3(t,r, s) 1s continuous
for t » stt > T-h or t > rtt > T-h.
Proof.

ForT>+t >T-h
T-h-T

Vir,x )= (1)p, (1)) (o) ]
T -h

+J\T"h“TJ'T"h’TX' (t+s)p,(r, 1, s)x(r+r)drds+x’ (T)IO p, (7, s)x(r+s)ds
-h -h 3. T"'h"T 4

N

T-h-1 T-h-1

pz(T, s)x(r+s)ds

x' (T+S)p3(1‘ , 1, 8)x{r+r)drds

+fT—h—Tj'0 x' (r+8)p,(r . 1, 8)x(r+r)drds
-h T-h-t '

0 T o)y r 7, s)x(r)drds (3.3)
- T=h-v  -h

It is clear that only the last four terms of (A.3) depend on x(t) for T-h<t< 7
" and that if x(t) = 0 for T~-h< t< 1 the last four terms of (a.3) are zero;
hence if they are to be indépendent of x(t) for T~-h<t< ¢ they must always
be zero. A sufficient condition for this is that Equation (A,1) and (A.2)

'. be satisfied, In order to establish necessity two corollaries will now be

proved.

26
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Corollary 1.

B(a.b)=j'bbe' (©)plr, s)x(s)drds=0 ¥ xeCla,b] 3 x(a)=x(b)=0 (n.4)
a a :

implies p(r,s)= 0fora<r<banda< s<b, where p(r, s) is an nxn
matrix, x(t) is an n vector,

plr, s) = p'(s,1r) and plr, s) is continuous for a < r_{ banda<s<b,

Proof,
Let'xk= 0, Vk#i
then
B(a,b) = _['b bx t)p. (r,s)x.(s)drds (7.5)
! LY S S § A | :

assume pii(q,q) > 0 where qe(a,b) then since plr, s) is continuous
F3e¢>03 pii(r,s) >0forg-e<r<gte and g-¢ < s < gte. Let
xi(r) > 0fora<g-e<r<gte <band xi(r) =0 elsewhere where

xi(r) is continuous then

B(a,b) = j.q+e J"qﬂ: xi(r) pii(r, s)xi(s)drds (A.9)
g-¢  Q-¢

since x(r)pii(r, s)x(s) > 0 for g~e < r < gte¢ and g-¢ < s < gt+e
B(a,b) > 0. This may be repeated for pﬁ(q, q) < 0 and obtain B(a,b) < 0.
These are both contradictions, therefore A
p,;{a, @) = 0 for ge(a, b)
Now assume pii(rl,sl) > 0 for rle (a,b) and sle(a,b). Then 3 ey > 0

3 plr,s)>0forr -¢

: 4. _ . _
1761 ST elandsl €; < S< 8 tey Define

and s.-¢

(r;s)eS ffr-e, <r<r-ey 1€ £ 8<8;me). Let

z(e;) = inf p(r, s)
S
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Note that z(e 1) > 0 and z(el) < z(ez) where €12 eé. Sinée p(r, s) is

continuous and plg, q) = Oqu(a,b))given e>038>0

S5 p(r, s) < ¢ for q-§ < T <-ats and g-5 < s < qts Vqela,b).
z(e ) ,
Let ¢ =—7—, and find corresponding s(e;). Let ¢, = inf(s(e 1), el).
€2 €2
Let xi(r) =1lforr-—<rgr, +—° and 1.> xi(r) >0fora<r-e,<r<rn

+e <r<s.te. <band xi(r).=0 elsewhere. Also,

<»bora<sl~e2 1Tey

2

xi(r) is continuous, therefore

r,+e r.+te

17¢2 I17¢y
B(a,b) = J‘ J"

1172 T17¢g

Xi(r). pii(r,, s)xi(é) drds

8. te s.+e
1 72 1

+‘rs s
1”2 17 ¢

+
S17e;

xi(r) pﬁ(r, S)Xi(S) drds

r,_e, ) .
J' Xi(r) pii(r, s)xi(s)drd s

S17¢2 1178

A

+ +
+frl €2 J.Sl €2
7€ 517%

xi(r) pii(r, s)xi(s) drds. (r.7)

but since pl(r,s) = p' (s,i‘) the last two terms of Equation (A.7) are equal.

Therefore
r.te r.te
1 "2 1 72 :
J‘ x i(r) pii(r' s)xi(s)drds

2 N17%2

B(a,b) = ‘f
: r,-e

+
S)Tey Sytey

X i(r) pﬁ(r . S) xi( s)drds

1 72 1 %2
syfey Iitey

+Zj' J" xi(r) pﬁ(r, s)xi(s)drds (a.8)
S.,~¢ r.—e ’

1 72 "1 72
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- + e e,
1 ez<r<r1 e;z.ands1 €2<S<slv 2

if the area of integration is reduced in the last integral of Equation

Since xi(r) pii(r, s)x(s) >0 forr

(A.8) the value of the ‘-integral will be reduced. Therefore
r.+e, r.+e
1 72 .71 72
‘f Xi(l") pii(r p S)Xi(s) drds

172 T17%

B(a,b) > j‘
r

Syte, s;te, ‘
+
. IS _ fs _ Xi(r)pii(r, S)Xi(S)drds
17%2 ®17%
s.te r.+e
1 °2/2 .1 °2/2
+
Z'J‘s _ J‘r _ Xi(r)pil(r’ S)Xi(S)drds (A.g)
17°%/2 "17%2/2

7€y and sy-e, 1

- + - +
and xi(r)pl_i(r, s)xi(s) < z(el)/4 forr,-e, <T< eyt andri-e, < s < e try

. . _ +
Since xi(s)piigr, s)xi(r) > z(el) for r,-e, SI<T <s< s te

2

+e .

and xi(r)pii(r, iji(s) < z(el)/4 for s te,

<r<s.te, and s.-¢ S <8
ST=2 357 1785 8=

| 1" €2

Equation (A.9) reduces to

z(e.)
4

Therefore B{a,b) > 0.

2 2
-— + =
B(a,b) > -2 (2¢,)"+2 z(e )e, = 0
- The same result can be obtained if pﬁ(rl, Si} is assumed less
than zero. These are both contradictions, therefore
pﬁ(r, s) =0Va<r<bandVa<s<b.
Now let x, =0Vk#i,j i#j

k

Therefore

BB =[° [Px (p (r, s)x (s)drds
a a
+j’bj‘b xj(r) pji(r, s)xi(s)drds (A.10)
a a

Since

o

p(r,s) = p' (s,1)

pij(r. s) = pji(s,r)
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Therefore

B(a,b) = j‘b fbxi(r)pij(r,s)xj(s)drds
a a '

-

+ f:f: xj(r)pij(s,r)xi(s)drds (A.11)

Since limits are the same on both variables the terms in Equation (A.11)

~are equal and

Ba,b) = 2 [°[Px W, (r, 9)x (s)drds - (8.12)
a'a + Y J

assume pij(rl' Sl) > 0 where rle(a,b), sle(a,b). Then 3¢ >0 3 pij(r, s) >0

fora<r,-e<r<r

1 ,te<banda<s

1 te < s< s.te<b,

1 1

~

Let xj(r) >0 foz: I i

—e <r<Tr,te xj(r) = 0 elsewhere)xi(é) >0
for 8;me <5< sl+e , xi(s) = ( elsewhere and xi(r) and Xi(s) are
continuous., Therefore |
r1+é Sl+e .
B(a,b) = Zj' J” xi(r)pij(r, s)xj(r)drds

I'l"s Sl"e

-g<r<r.teand s,-e<s<s

. , . +
since xj(r)pij(r s)xl(s) >0forr ! . i*e,

1

B(a,b) > 0, If pij(rl' sl) had been assumed l?ss than zero B(a, b) would

have been less than zero. Both results are contradictions, therefore
pij(r,sj =Qfora<r<banda<s<hb.

It has been shown that p(r,s) = 0 fora<r<banda<s<b., From

continuity p(r,s) = 0 fora<r<banda<s<b.

Q.E.D,
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. Corollary 2.

Cla, b) = x' (b)j' p(s)x(s)ds =0 ¥xeCla, b]
implies p(s) =0 for a < s < b, where p(s) is an nxn matrix continuous
fora<sgb.
Proof.

Let xk =0 k 7! i then

Cla,b) = x,(b) f: p,,(8)x,(s)ds

assume pﬁ(b) > 0, let xi(s) = pii(s) fora < s < b, since pﬁ(s) is continuous
Jane>0 3 pﬁ(s) >0 for b > s >b-e. Therefore

b 2
Cla.b) > pii(b) J‘ pii(s)ds >0
b-¢

and for pii(b) < 0 it can be shown that C(a,b) < 0., These are both con-

tradict_ions,' therefore pii(b) =0.
Choose xi(s) = pii(s) a<s<b-ce>0, Xi(b) =] and xi(s) con-

tinuous, therefore

b~e 2 b
Cla.b) = J" € pii(S)ds +j‘ pii(S)xi(S)ds.
a b-¢

Now if pii(sl) > 0 for sl < b choose ¢ such that b-e > sl then
j'b—Q pz.(s)ds >fb~€1 p?_,(s)ds > 0 where ¢ < ¢, and
ii - ii 1
a a
J‘b pii(s)xi(s)ds can be made arbitrarily small by decreasing ¢, there-
b-¢ :
fore C(a,b) > 0.

For pﬁ(sl) < 0 it can be shown that C(a,b) < 0. These are both
contradictions, therefore

pﬁ(s),=0 a<s<b.

~
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Now let X, =0k #1i,j i¥# j, then

Cla,b) = x,(b) J‘:pij(s)xj(s)+xj(b)‘ f: ()% (e)ds.
Assume -
pi].(sl) >0 s, <b.

Then 3¢>0 3 pij(S)>0_forsl—e.<_s_<‘_s 4+¢ and s.+e < b ,

1 1

.Let x.(b) =0, x,(b) =1 and x,(s) > 0 for s

j oG 1
g |

C(a,b) J' pij(s)xj(s)ds > 0.

sl—e

For pij(sl) < 0 it can be shown that C(a,b) < 0. These are both con-

-g < s< s,te, xj(s) =0 elsewhere,

1

tradictions, therefore pij(s):O a < s <b, Again by continuity
pij(s) =0a<s<b., Q.E.D.
It must now be shown that

0 - »0
X(T)Ir P, (r.,s)x(r+s)dst J‘ j’o x! ('r+r)p3(T ,1, s)x(r+s)drds
’ T-h-7 T-h~y T-h~t

PR ets)p (ot s)xrtn)dnds

-h T-h~-1
-+ IO IT—h—T X' ('T +S)p ('T Ty S)X(T+r) drds =0 (A . 13)
3 :
T-h-t -h ‘

implies that Equations (A.1) and (A.2) are sa‘t‘isfied. First Equation (A,13)

is simplified by noting that
93(1',1‘, S) = p'3('Tl S,I') (Ao 14)
implies

J‘O jT—h—T x' (=r+5)p3(T .1, 8)x{r+r)drds
T-h~r ~h

= j’o J‘T—h—T x!' (T+I‘)p3('l'l s,r)x(T+S)drdS (A‘ 15)

" T-h-t ~h
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Interchanging the order of integration yields

[0 TN R etedpg e r s)xdr+)dnds
T-h-v -h )
- J..T—-h--'r IO
-h T-h-r _
Since r and s are dummy variables they may be interchanged yielding

J’O ‘j.T-h-—rr

T-h-r * ~h

- T-h-1 J.O
J. —h T-h-7
Utilizing (A.17) Equation (A,13) becomes

-

xT(fr+rip3(fr , S, T)x(r+s)dsdr (A.16)

x' (r+s) p3(¢ T, s)x{r+r)drds

x' (T+s)p3('r,r, s)x(r+r)drds (A.17)

x' (7 )j‘o P, (r.s)x(r+s)ds+ : J‘O x' {r +s)p3(T .1, s)x(r+r)drds
Teheg T-h-r 'T-h-7
""IT=h~7 .0 ' _
+2J” _J“ X (¢+s)p3(T,r, s)x{r+r)drds =0 (A.18)
-h - T-—h-—'r

Since x(t) is arbitrary for r-h < t <1, let x(r+q) =0 for -h < g < T-h-7

and x(t) =0, Equation (A,18) becomes

J.O 0

' (r+s)p,(r. 1, s)x{r+r)drds =0 (r.19)
T-h-t T-h-t '

Let r+¢ = g and s+t = v, then (A.19) becomes

[© [T % @pylr,ar,v-r)x(v)dady =0 ¥xeClT-h, 0]

(A.20)
b h - (T-h)=x(r)=0
From Corollary 1
p3('r ,q-1,v~1) =0 for T~h < g<tand T-h<v<rtor
p3('r.r, s) =0 for T-h<ttr<t and T-h<tts < 7. (A.21)

Making use of (A.21) and unspecified x(t) for r-h <t < ¢ and x(7) =0
Equation (A.18) becomes

T-h-1t A0
2 _
j -h J‘T- h-r

<

x' (T+S)p3(7,r, s)x(r+r)drds =0 (n.22)
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. < T-h-r and T-h— < s. < 0. Then

,s.1)>0for—-h<r1 1

assume p,. A7,r
p31]('r:
Jane>0 spéij('r,r,s)>0forr -eg<r<r.teand s,~e < s< s, ,te

1 1 1 1

+e¢ < T-h-¢ < r.-¢. Let xi(T+q) >0forr.-e<qg<r

Whgre r 1

+ +
1 €, Xj(T, q)

>0forsl—e<q< Sy

=0 k#1i,j. Equation (A,22) becomes

1 1

+e, xi(q) = 0 elsewhere, xj(q) = 0 elsewhere and

X,
k
s, te r.te

1 ¢ 1 ‘
2 J Xj(T+S)p31j(ﬂr,r, s)x,(r+r)drds = 0 (A.23)

S.-e I_-¢ )
1

- r<r.tecand s,~e < s< s+
1€< 16 1 16

Equation (A.23) is a contradiction. If pﬁ(fr T

but since xj(¢+s)_p3ij (v,r, s)xi(T+r) >0 forr
1 sl) had been assumed less
than zero a coqtradiction would still have been obtained, therefore,

pgji('r,r, s)=0forT-h-r <s<0and-h<r<« T-h-r. As before continuity

yvields

p3ij('r,r; s) = 0 for T-h~r < s< 0 and -h < r < T-h-r. (a.24)

Therefore, from (A.24) and (A.21) pBij(T~’r' s) = 0 for T~h < s+r <7 and
since p3(T,r, s) = p3('r ,s,1) then pSij(T'r’ s) = 0for T-h<rir < 7,
Rewriting Equation (A.13) yields x’'(r) IIO "pz('r. s)x(r+s)ds =0

. : __h__,[ .

Vx'r eClr-h, 1], Letting q = v+s yields

x' (1) i;r p, (T, g-7)x(q)dq = 0
-h

From Corollary 2
pz(-r vg-r) = 0for T-h< g<
or

pylr.s)=0forT-h<strgr . Q.E.D,
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